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Abstract. A method for calculating the electronic states in a quantum well (ow) system is 
presented based on the tight-binding Hamiltonian within a one-band model and in terms of 
Dyson’s equation. The Hamiltonian for the whole system is separated into two parts: one 
corresponds to an infinitely pure linear chain and the other describes a finite impurity chain 
confined to the ow region. The explicit solution to Dyson‘s equation for the QW can be 
obtained via a compact recursion relationship. The formulae have been demonstrated using 
particular examples. From our numerical evaluation of the energy of the quasi-bound states 
for the QW and comparison with the usual effective-mass approximation, it shows that for 
both models the results are the same. We believe that our treatment may provide great 
flexibility for dealing with the problem in heterostructures. 

1. Introduction 

Recent progress in semiconductor growth techniques has led to widespread interest in 
the physics of low-dimensional systems. Quantum wells (QWS), superlattices, double- 
barrier resonant tunnelling structures have become the objects of extensive investigation 
(see, e.g., [l, 21). One of the systems attracting considerable attention is the single well 
sandwiched between two barriers, in which electrons and holes are confined to a well 
defined region in space; it leads to the existence of quasi-bound states in the QW. 
Various methods and assumptions have been used to evaluate the discrete energy levels 
associated with the bound states, such as using the effective-mass approximation based 
on the k X p method [3,4],  the self-consistent variational function approach [ 5 , 6 ] ,  the 
Green function approach with the tight-binding model [7-91 and so on. 

Recently some theoretical considerations have been presented [7,8] about the den- 
sity of states of heterostructures within a one-band and a two-band formalism. The 
calculations are based on a tight-binding Hamiltonian using the transfer-matrix approach 
via Dyson’s equation. This method is exact for a one-dimensional system and seems very 
appropriate for treating the problem of heterostructures. It was also shown that the 
application of the effective-mass approximation (EMA) to the calculation of the binding 
energy is acceptable and valid when compared with the exact results [7,8]. 

In this work we present a calculation method for the electronic states in a QW system 
based on the tight-binding approximation within a one-band model and in terms of 
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Figure 1. Schematic representation of the tight-binding model for the OW system: a finite 
impurity chain composed of type B atoms embedded in an infinitely pure linear chain 
composed of type A atoms. 

Dyson's equation similar to that presented in [7,8]. However, we handle the total 
Hamiltonian of the system in a different way from [7, 81. First, we consider an infinitely 
pure chain to serve as our starting point, i.e. an unperturbed system. Then we take into 
account the contribution of the perturbed potential confined to a finite QW region. This 
treatment has some advantages. First, we can use the well known Green function for 
the infinitely pure linear chain. Second, the perturbed potential is concentrated on the 
narrow QW region; we can then reach an essential simplification by obtaining a set of 
closed simultaneous equations to determine the one-particle Green function. The 
explicit solution to these equations can be derived from the recursion relationships. It 
may make the numerical computation more efficient. It is also clear that our approach 
may provide great flexibility for dealing with this kind of problem. 

We describe the tight-binding Hamiltonian within a one-band model used in our 
calculation and the basic equations in § 2. The result of numerical calculation and the 
brief conclusions are given in § 3. 

2. The one-band model and the basic equations 

Since the one-dimensional model contains the essence of the problem in a QW system, 
we restrict our work to this case. We assume that the discontinuities in potential for the 
heterostructure are large enough that the QW can be considered as an isolated QW of 
finite depth. A schematic representation of the QW geometry used in this work is shown 
in figure 1. A finite impurity chain composed of type B atoms is embedded in an infinitely 
pure linear chain composed of type A atoms to form a heterostructure. There is no great 
loss of generality in assuming that the interaction of the atoms is effective only between 
nearest neighbours. Let us consider a unit-cell length of the chain. Therefore the tight- 
binding Hamiltonian for the heterostructure may be expressed in the site representation 
as 

where the sum over m is limited to nearest neighbours only. a,' and a,, stand for the nth 
site creation and annihilation operators, respectively. The local site energy E, is E,  (for 
a type A atom) or &b (for a type B atom). The interaction energy U,, is -uaa  (outside 
the QW) or - Ubb (inside the QW), or - U,b at the interface, corresponding to direct-gap 
semiconductors [9]. U,b is equal to the geometric average of U,, and Ubb. For definiteness, 
the site of the type B atom is labelled 1 , 2 , 3 ,  . . ., N. The number of type B atoms is N. 

The key mathematical property of the Green function is that it is diagonal in a matrix 
representation in which the Hamiltonian of the total system is diagonal and that it has 
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poles at the real values corresponding to the eigenvalues of the system. The density of 
states for the system is determined by the imaginary part of the Green function for the 
system. 

It is clear that, in order to study the electronic states in the QW, the evaluation of the 
one-particle Green function for the system becomes the main task. We now separate 
the whole Hamiltonian into the unperturbed term H ,  and the perturbed term V :  

H = H , + V  (2) 

where 

H ,  = E,  C, a:a,, - U,, C, ais,. 
n m # I ?  

Here the site labels n and m run from minus infinity to plus infinity. Obviously, this 
Hamiltonian corresponds to a pure linear chain composed of type A atoms. The 
perturbed Hamiltonian is given by 

where 

and 

This corresponds to the Hamiltonian for a finitely linear chain with interfaces. The one- 
particle Green function for the whole system can be determined by the so-called Dyson 
equation: 

G = Go + G'VG (4) 

where Go denotes the one-particle Green function for the regularly linear chain. Intro- 
ducing the transfer matrix defined by [7] 
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Thus the matrix elements for Go are then connected with each other via the transfer 
matrix T as 

(6) 

(7)  

- ~ l n i '  G O  
c!+ni .n  - t211 

~ ( w )  = (1/2v, ,)[-(w - E J  + sgn(w - E~)V(W - 

and the particular expression for the 7'-function is [7] 

- 4 v L ]  

where sgn(x) means taking the sign of the value x. The T-function is complex in the 
interval 

-2v,, < W - E ,  < 2v,, (8) 

which corresponds to the energy band of the regular chain. The diagonal elements for 
Go in the site representation are well known [lo], i.e. 

c ! ~  = go = i sgn(w - E , ) / V ' ~ U ~ ~  - (w - E , ) * .  (9) 

We are now in a position to calculate the Green function G for the whole system. 
Dyson's equation (4) can be expresed in terms of the matrix elements in the site 
representation as 

where the site labels i a n d j  run over the whole system. 

of linearly coupled equations: 
Using the particular expressions (3b) and (3c) for V ,  the equation (10) becomes a set 

N +  1 

CO, = TI'-'lg, = 2 (s ,p  + cplP)CP, f o r - - < i , j < + x  (11) 
p=o  

where 

@ p , p  = 1 + u p  p = 0, 1 , 2 , .  . ,, N + 1 

@., ' P  = b P Ti-P i > p , p = O ,  1 , 2 , .  . . , N +  1 

i = p  + l , p  + 2 , .  . ., N + 1 

i < p , i = 0 ,  1 , 2 , .  . . , N +  1 

p = i +  l , i + 2 , .  . . , N +  1 

C p .  1.P = c P TP-' 

= 0 otherwise 

and 

Note that the matrix Q, does not depend on the subscript j .  
To obtain the one-particle Green function for the whole system, we need to solve 

the inhomogeneously coupled equations ( 1 2 ) .  We now consider the QW region and the 
interface. Consequently, we take into account only the sites labelled from 0 to N + 1. 
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The rank of the set of equations becomes N + 2. We can write Dyson's equations in an 
explicit version as follows: 

l + a o  c ~ T  c2T2 ... c N T ~  cN+lTN+' 

boT 1 + U ,  c2T ... cNTN-' cN+lTN 

boT2 b l T  1 + a 2  ... c N T N P 2  c ~ + ~ T ~ - '  

... ... ... ... ... ... 

... ... ... ... ... ... 
b 0 TN- '  b 1 T N - 2  b 2 T N - 3  ... cNT CN+1T2 

boTN blTN- '  b 2 T N - 2  ... 1 + U ,  cN+lT 

bOTN+l b I T N  b2TN- '  ... b N T  1 + ~ ~ + ~  

Go1 

G11 

(321 

G N - l . l  

GN1 

Gh'+ 1,l 

f o r j =  1. (13) 
The superscript T denotes the transposition operation. Because the coefficients appear- 
ing in the equation (13) exhibit obvious regularity, by using the standard operation such 
as Laplace's development of the determinant [ 111, through many time-consuming and 
cumbersome operations, we can finally derive a solution to equations (13) as follows 
(see Appendix for details): 

D,+,(o) can be evaluated via the following recursion relationships: 
Gj,(w) = Bjj(m)/DN+?(o)  f o r j = 0 , 1 , 2  . . . . .  N + 1 .  (14) 

(15) 
D k  = a N + 2 - k D k - I  + ( - 1 ) k - ' c , v + 2 - k F k - i  

D,j = 1 Dl = a" D 2  = aNalv+ 1 - E N P N +  I .  

F k -  l({ai}, { P I } ,  { y j } )  satisfies the other recursion relation 

F k  = P N + Z - k F k - l  - a ~ 1 + 2 - k Y N + 3 - k F k - 2  

Fo = 1 F ,  = PN+I F2 = P N P N + I  - @ N Y N + l .  
(16) 

%$ Here the coefficients are the combinations of the {ai}, {bi} and (ei) as 

ai = 1 + aj - bi 

Si = -[(l + ai ) /T  + (1 + a i  - bi - c j ) T ]  

i = O , 1 , 2  . . . . .  N + l  

i = 1 , 2 , 3  . . . . .  N 

B N + l  = --[(I + aN+l ) /T-  CN+lTI 
yi = 1 + ai - C f  

E j  = biT/N+l-i/ 
i = 2 ,3 ,4 ,  . . . .  N +  1 

i = O , 1 , 2 , 3  . . . . .  N 

otherwise. f i .  = E .  = 0 
I 1  

a.  = y .  = 1 
I I  

For the numerator Bj j (o )  of the solution, i t  can be estimated by using the similar 
recursion relations (15) and (16) with some different coefficients 

a, = 0 

Y, = 0 

B, = go(T - 1P-I 

for G,j. (18) 6, = g,, TI"+ 1-11 

The other coefficients remain unchanged. The zeros of G,;,: give the energy levels of the 
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quasi-bound states inside the QW, as are determined by D,v+z(w) = 0. The density of the 
states is then determined by 

To demonstrate that the recursion relations are correct, we apply them to the simplest 
case. A QW is composed of only two nearest-neighbour atoms and only the diagonal 
interaction between the two impurity atoms is effective. We label the sites of the impurity 
atoms 1 and 2, the interaction potential is taken as U , ,  = Ubb = u,b and u1,,  = u ~ , ~  = 
E, - &b. Corresponding to this particular case, we have N = 2 and 

a1 = bl = ~1 = ~1.1go a2 = b2 = ~2 = ~ 2 , 2 g o  
(20) 

a ,  = b,  = c, = 0 otherwise. 

Substituting these parameters into equation (17), one obtains 

ffyi = 1 y ;  = 1 for any i 

P I  = -[U + u,,,go)lT+ ( 1  - u,,,go)Tl 

P 2  = -[U + u2,2go)P+ (1 - u2.2go)TI 
f i 3  = -1/T pi = o  for i  3 4. 

By using the recursion relationships (15) and (16), one obtains 

D ~ ( u )  = D1 - b2TFI + blT2F2 = m3 - b2TP3 + b,T2(P2b3 - ( ~ 2 ~ 3 )  

= (1 + u1,1go)(l + u2,zgo) - u1,1U2,2g;T2. 

This expression agrees completely with that given in [lo]. 

3. Numerical calculations and conclusions 

To see whether our particular approach can be used to treat the problem of hetero- 
structures, we need to perform numerical calculations for some specific examples. We 
choose the set of parameters given in [7] for GaAs-(Ga, Al)As, i.e. E,  = 0.22 and 
0.14 eV, Eh = 0; only the difference E, - Eb is involved in our formulae. We take U , ,  = 
Ubb = 7.0 eV. The width of the Qw is Nu,  where N is the number of the type B atoms 
composing the QW, and a is the cell length of the chain. In table 1 we present the 
calculated energy of the quasi-bound states inside the QW for different widths of the well. 

To compare our calculated result with that obtained by the usual EMA, we also 
perform an elementary quantum mechanical calculation. We need to solve the following 
transcendental equation to determine the discrete energy levels in a rectangular QW of 
finite depth equal to Vu = / E ,  - and of width Nu [12]: 

N m = n n - 2 s i n - ' g / E I V o  

where n is taken to be an integral number ( n  = 1 ,2 ,3 ,  . , .). Here we consider that the 
effective mass is related to lu,,I by [9] 

m* = h2/21u,,ja2. 

For simplicity we assume that for both types of atom the effective masses are the same. 
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Table 1. Energy of quasi-bound states in the QWS. 

V ,  = 0.22 (eV) V,  = 0.22 (eV) V,, = 0.14 (eV) V,, = 0.14 (eV) 
N present work EMA present work EMA 

10 0.13140 

40 0.02600 
0.10050 
0.20372 

80 0.00830 
0.03300 
0.07360 
0.12800 
0.19260 

0.13174 0.09675 0.09689 

0.02603 0.023 19 0.02320 
0.10068 0.08708 0.08719 
0.20402 

0.00828 0.00778 0.00777 
0.03295 0.03083 0.03080 
0.07342 0.06801 0.06797 
0.12826 '0.11553 0.11569 
0.19297 

It is interesting to note that the result calculated from our model, which is exact for 
a one-dimensional system and beyond the EMA, is the same as that obtained by the EMA. 
It is evidence that the EMA is very suitable for treating the problem of heterostructures, 
as indicated in [7]. 

Although we use the same tight-binding model for the heterostructures in this paper 
as that presented in [7, 81, our calculated scheme is different from that in [7, 81. The 
unperturbed system and the perturbed effect are handled separately. We can use the 
well known one-particle Green function for the infinitely regular chain to estimate the 
Green function for the whole system. To investigate the electronic states in the QW, it 
involves solving only the simultaneously linear equations with N + 2 rank. The explicit 
solution can be expressed by the compact recursion relationships. Therefore, it may 
provide a more efficient numerical computation. For asymmetric barriers, e.g. for the 
various potential profiles under the application of a DC electric field, and for a QW made 
by amorphous materials, our approach provides a uniform treatment and may be shown 
to be more powerful, convenient and rapid. The advanced results are presented in a 
forthcoming paper. 
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Appendix 

We now briefly present some evaluations for the relevant determinant appearing in the 
text. To simplify the description of the calculated process, we introduce the following 
symbols to represent the corresponding operation procedure. 
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(i) Operate an N X N determinant by subtracting (adding) c times the (i - 1)st row 
(column) from the ith row (column), and then subtract c times the (i - 2)ndrow (column) 
from the (i - 1)st row (column), etc, 

ith 3 c(i  - 1)st -+ ith row (column) 

opment according to its jth column (row) [ll], i.e. 

i = 2 , 3 , 4 , .  . . , N .  
(ii) Operate on an N X N determinant A by performing the so-called Laplace devel- 

N N 

A = al jAl j  or A = ajlAj l .  
j =  1 j = l  

This is the sum of the products of the elements of the jth column (row) of A and their 
respective cofactors. We symbolise this as 

Dev A to jth column (row). 
To solve Dyson's equations for the QW system, we meet the following determinant: 

1 + a o  c ~ T  c2T2 c3T3 ... chI-1 c , ~  T N  C N +  1 T N f  ' T N -  1 

bo T 1 f a 1  c ~ T  c3 T2  ... C N - 1  cNTN- '  c N +  1 T N  TN-2 

boT2 b l  T 1 + a2 c ~ T  ... C,+l  T N - 3  C , ~ T ~ - '  C ~ + ~ T ~ - '  

... ... ... ... ... . . .  ... ... 
(AI)  ... ... ... ... ... ... * . .  ... 

boTN- '  b l  T N - 2  b 2 T N - 3  b 3 T N - 4  ... 1 + a N - 1  cNT C N +  1 T 2  
boTN blT"-' b TN - b T N  - ... b N -  T 1 + a N  CN+IT 

bOTN+'  b l T N  b2TN- '  b 3 T N - 2  ... b N - l  T2  b N T  $- a N + 1  

We calculate this by the following procedure. 
(i) ith - (T1) x (i + 1)st -+ ith row, for i = 1 , 2 , 3 , 4 ,  . . . .  N + 1. All the elements 

below the diagonal line become zero with the exception of the last row. For the modified 
DNt2, we continue to operate. 

(ii) ith - ( T )  x (i + 1)st --., ith row for i = 1, 2, 3, . . . .  N.; the last two rows remain 
unchanged. Thus DN+ has the upper tridiagonal form in which the element is zero apart 
from the diagonal and two lines of elements immediately to the upper side of it. Of 
course, the elements of the last row still exist, i.e. 

sop, y 2 0  0 . . . . . .  0 0 

0 a1 /I* y3 0 . . . . . .  0 0 

0 0 a2 p3 y4 . . . . . .  0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0 0 0 0 . . . . . .  &N B N + 1  

E o  E1 E 2  5 3  5 4  . . '  . ' .  E N  (Ulv+1 

where the relationship between {(U,}, { S I } ,  {y,}, {CL} and {a,},  {b,}, {c,} are given by equation 
(17) in the text. We now perform the following. 
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(iii) Dev the modified D N + 2  to the first column. We have 

D N + *  = + ( -1>N+3E0FN+1.  (A3) 

(A4a)  

Do = 1 D1 = a,v+1 ~2 = a N a N + i  - t N O N + i .  (A4b) 

The general recursion relation can be written as 
k + l  + 

D k  = m N + Z - k D k - l  + (-1) G " 2 - k F k - 1  

and 

The second determinant F,,+l({a,}, {Pi}, Cyi}) is defined by 

F N + 1  = 

y2 0 0 ... ... 0 0 
a1 p2 y3 0 ... . . .  0 0 
0 a2 p3 y4 ... ... 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . I . 
0 0 0 0 ... ... PN Y N + 1  

0 0 0 0 . . .  ... b N + 1  

It is in the exact tridiagonal form. We can readily derive the recursion relation to be 
satisfied by FN+ 

F N + I  " P I F N  - a l Y 2 F N - 1 .  

The general term can be expressed as 

F k  = P N + 2 - k F k - l  - a N + 2 - k Y N + 3 - k F k - 2  

and 
- 

Fo = 1 F l  = P N + 1  
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